Configuration of ScalarDB Analytics with Spark
This version of ScalarDB Analytics with Spark was in private preview. Please use version 3.14 or later instead.
There are two ways to configure ScalarDB Analytics with Spark:
- By configuring the properties in
spark.conf
- By using the helper method that ScalarDB Analytics with Spark provides
Both ways are conceptually equivalent processes, so you can choose either one based on your preference.
Configure ScalarDB Analytics with Spark by using spark.conf
​
Since ScalarDB Analytics with Spark is provided as a Spark custom catalog plugin, you can enable ScalarDB Analytics with Spark via spark.conf
.
spark.sql.catalog.scalardb_catalog = com.scalar.db.analytics.spark.datasource.ScalarDbCatalog
spark.sql.catalog.scalardb_catalog.config = /<PATH_TO_YOUR_SCALARDB_PROPERTIES>/config.properties
spark.sql.catalog.scalardb_catalog.namespaces = <YOUR_NAMESPACE_NAME_2>,<YOUR_NAMESPACE_NAME_2>
spark.sql.catalog.scalardb_catalog.license.key = {"your":"license", "key":"in", "json":"format"}
spark.sql.catalog.scalardb_catalog.license.cert_path = /<PATH_TO_YOUR_LICENSE>/cert.pem
The scalardb_catalog
part is a configurable catalog name. You may choose any name you prefer.
Available properties​
The following is a list of available properties for ScalarDB Analytics with Spark:
Property name | Required | Description |
---|---|---|
spark.sql.catalog.{catalog_name} | Yes | Must be com.scalar.db.analytics.spark.datasource.ScalarDbCatalog |
spark.sql.catalog.{catalog_name}.config | Yes | Path to the ScalarDB configuration file |
spark.sql.catalog.{catalog_name}.namespaces | Yes | Comma-separated list of ScalarDB namespaces to import to the Spark side |
spark.sql.catalog.{catalog_name}.license.key | Yes | Your license key in the JSON format |
spark.sql.catalog.{catalog_name}.license.cert_path | Either this or license.cert_pem is required | Path to your license certificate file |
spark.sql.catalog.{catalog_name}.license.cert_pem | Either this or license.cert_path is required | Your license certificate in the PEM format |
Importing schemas​
After properly setting spark.conf
, you should have a catalog in your Spark environment, which contains tables connected to the underlying databases of ScalarDB. However, the catalog provides access to raw tables that contain transaction metadata, which is managed by ScalarDB. Instead, you may only be interested in the application-managed data without transaction metadata.
For this purpose, ScalarDB Analytics with Spark provides the SchemaImporter
class, which creates views that interpret the transaction metadata and show only application-managed data. Those views have an equivalent schema to the ScalarDB tables, and users can use the views as if they were ScalarDB tables. The following is an example of how to run SchemaImporter
with the properly set catalog.
import com.scalar.db.analytics.spark.view.SchemaImporter
class YourApp {
public static void main(String[] args) {
SparkSession spark = SparkSession.builder().appName("<YOUR_APPLICATION_NAME>").getOrCreate()
new SchemaImporter(spark, "scalardb_catalog").run() // Import ScalarDB table schemas from the catalog named "scalardb_catalog"
spark.sql("select * from <YOUR_NAMESPACE_NAME_1>.<YOUR_TABLE_NAME>").show()
spark.stop()
}
}
Configure ScalarDB Analytics with Spark by using the helper method​
You can use a helper method that ScalarDB Analytics with Spark provides to get everything set up to run analytical queries, including configuring the catalog and importing the schemas. In addition, you can use the helper method to set up ScalarDB Analytics with Spark in application code. This would be useful for doing a quick test without prior configuration.
The helper method is provided through Java and Scala. In Java, you can use ScalarDbAnalyticsInitializer
to specify the options, which are equivalent to the properties in spark.conf
, as follows:
import com.scalar.db.analytics.spark.ScalarDbAnalyticsInitializer
class YourApp {
public static void main(String[] args) {
// Initialize SparkSession as usual
SparkSession spark = SparkSession.builder().appName("<YOUR_APPLICATION_NAME>").getOrCreate()
// Setup ScalarDB Analytics with Spark via helper class
ScalarDbAnalyticsInitializer
.builder()
.spark(spark)
.configPath("/<PATH_TO_YOUR_SCALARDB_PROPERTIES>/config.properties")
.namespace("<YOUR_NAMESPACE_NAME_1>")
.namespace("<YOUR_NAMESPACE_NAME_2>")
.licenseKey("{\"your\":\"license\", \"key\":\"in\", \"json\":\"format\"}")
.licenseCertPath("/<PATH_TO_YOUR_LICENSE>/cert.pem")
.build()
.run()
// Run arbitrary queries
spark.sql("select * from <YOUR_NAMESPACE_NAME_1>.<YOUR_TABLE_NAME>").show()
// Stop SparkSession
spark.stop()
}
}
In Scala, the setupScalarDbAnalytics
method is available as an extension of SparkSession
:
import com.scalar.db.analytics.spark.implicits._
object YourApp {
def main(args: Array[String]): Unit = {
// Initialize SparkSession as usual
val spark = SparkSession.builder.appName("<YOUR_APPLICATION_NAME>").getOrCreate()
// Setup ScalarDB Analytics with Spark via helper method
spark.setupScalarDbAnalytics(
// ScalarDB config file
configPath = "/<PATH_TO_YOUR_SCALARDB_PROPERTIES>/config.properties",
// Namespaces in ScalarDB to import
namespaces = Set("<YOUR_NAMESPACE_NAME_1>", "<YOUR_NAMESPACE_NAME_2>"),
// License information
license = License.certPath("""{"your":"license", "key":"in", "json":"format"}""", "/<PATH_TO_YOUR_LICENSE>/cert.pem")
)
// Run arbitrary queries
spark.sql("select * from <YOUR_NAMESPACE_NAME_1>.<YOUR_TABLE_NAME>").show()
// Stop SparkSession
spark.stop()
}
}